

Vegetation Resilience and Resistance and the Importance of the Herbaceous Understory

Jeanne Chambers

Resilience, Resistance and Thresholds

- Resilience = the capacity of an ecosystem to regain characteristic processes over time following stress or disturbance
- Thresholds are crossed when an ecosystem does not return to the original state via natural processes following disturbance, and requires active management to restore

Resistance, Resilience and Thresholds

- Resistance = the ability of an ecosystem to maintain characteristic processes despite various stressors or disturbances
- Resistance to invasives = the biotic and abiotic factors and ecological processes in an ecosystem that limit the population growth of an invading species

Resilience increases with elevation over gradients of available resources and net productivity

- Higher productivity & more favorable growing conditions
- More rapid recovery after disturbance
- Increased capacity to compete with invaders

(Wisdom & Chambers 2009)

Resistance to invasive species reflects their ecological amplitude

- Resistance is higher in stressful environs
- Historically, Wyoming sage least resistant to cheatgrass
- Mountain sage least resistance to trees

Factors that Influence Resistance and Resilience at Local Scales

- Ecological memory
 - Site potential as indicated by soils and precipitation
 - Species composition and ecological condition as indicated by native seed banks and seed sources, and residual plants and animals
 - Presence, abundance & type of invasive species
- Severity and frequency of disturbance -
 - Inappropriate livestock grazing, high intensity fires, and fire return intervals less than the historical interval

Effect of Fire and Elevation

Intermediate Tree Cover (~30 to 40%)

(Dhaemers & Chambers in process)

Effect of Tree Cover and Fire

Three years post-burn

Ecological memory decreases with increasing tree cover

- Perennial herb biomass decreases with tree cover both pre- and post burn
- Annual herb biomass increases with tree cover
- Resistance and resilience decrease as tree cover increases

(Dhaemers & Chambers in process)

Effect of Elevation, Herbaceous Species and Fire

Ecological resistance increases with elevation

- Higher elevations and colder soil temperatures result in ecophysiological constraints
- Site characteristics and growing season conditions have greater effects on establishment than fire or herbaceous species removal

(Chambers et al. 2007)

Effect of Elevation, Herbaceous Species and Fire

Effects of burning and removal on growth and reproduction are additive & similar over elevations

- Removal 2 to 3 fold
- ❖ Burning 2 to 6 fold
- Removal + Burning –10 to 30 fold
- Disturbances that increase resources decrease resistance
- Mechanism is growth and reproduction after establishment
- Perennial herbaceous species increase resistance via competition for resources

Landscape Level Controls on *Bromus tectorum*

Landscape Level Controls on A. tridentata

Management Approach

A basic approach for managing and restoring these ecosystems using the concepts of resistance and resilience includes:

- First → assess environmental characteristics, vegetation types and ecological conditions at landscape scales.
- Second → develop an understanding of ecological resistance and resilience and relationship to thresholds for the ecosystems of interest (e.g. Stagestep.org).
- ❖ Third → prioritize management activities at landscape scales. Categories include Protection, Prevention and Restoration/Rehabilitation.

Prioritization

- Protect areas with inherently low resistance or resilience
 - Eliminating stressors like repeated fire and inappropriate livestock grazing
 - Control disturbances and invasion
- Prevent threshold crossings by increasing resistance and resilience
 - Eliminate stresses, control disturbance and invasion
 - Increase herbaceous perennials; reduce woody fuel loads
 - Implement vegetation management treatments
- Restore/Rehabilitate high priority areas
 - Critical habitat for T&E species, fire breaks for intact systems, wildland/urban interface, ESR/BAER seeding

Case Study – North Monitors Tree Expansion

14" 10" 18"

Resilience & Resisistance

- Elevation relatively low
- Precipitation &productivity moderately low
- Ecological condition good
- Abundance of invasives cheatgrass present; locally abundant
- Grazing allotment vacant

Management Implications

- Slower recovery due to low productivity
- Higher risk of cheatgrass spread, especially after fire
- Lack of fine and contiguous fuels
- Use mechanical treatments
- Minimize surface disturbance
- Manage grazing

Resilience & Resilience

- Elevation intermediate
- Precipitation &productivity -moderate
- Ecological condition fair/low
- Abundance of invasives cheatgrass present; locally abundant
- Grazing allotment active

Management Implications

- Low recovery due to high tree cover & depleted understory
- Higher risk of cheatgrass spread, especially on South slopes
- Higher risk of severe fire
- Treat areas with low tree abundance use mechanical methods
- Create fuel breaks
- Revegetate following fire
- Manage grazing

Resilience & Resilience

- Elevation high
- Precipitation &productivity -moderately high
- Ecological condition good
- Abundance of invasives cheatgrass largely absent
- Grazing allotment active

Management Implications

- Higher recovery rates
- Lower risk of cheatgrass spread
- Lower risk of severe fire
- Treat with prescribed fire
- Manage grazing
- Monitor results adapt management

The Road Forward

- Prioritizing restoration and management activities based on resistance and resilience can:
 - Increase sustainability
 - Maintain ecosystem services
 - Provide for species of concern
 - Adapt to a changing climate
- The Great Basin Science Delivery Project & other USDA and JFSP management & research efforts are:
 - Providing information on the effects of management actions on resistance and resilience across diverse landscapes
 - Developing syntheses on these concepts and how to apply them

Acknowledgements

- Bob Blank
- Dave Board
- Matt Brooks
- Lea Condon
- Carla D'Antonio
- Jessica Dhaemers
- Jim Grace
- Susan Meyer
- Mike Pellant
- Bruce Roundy
- Robin Tausch
- Peter Weisberg
- Alison Whitaker
- Mike Wisdom

References

- Brooks, M. L. and J. C. Chambers. 2011. Resistance to invasion and resilience to fire in desert shrublands of North America. Rangeland Ecology and Management. Invited article. in press.
- Chambers, J. C. 2005. Fire related restoration issues in woodland and rangeland ecosystems. Pages 149-160. In L. Taylor, J. Zelnik, S. Cadwallader, and B. Hughes (compilers). Mixed Fire Regimes: Ecology and Management. Symposium Proceedings. Nov17-19, 2004, Spokane, WA. AFE MIXC03.
- **Chambers, J. C.**, B.A. Roundy, R. R. Blank, S. E. Meyer and A. Whittaker. 2007. What makes Great Basin sagebrush ecosystems invasible by *Bromus tectorum*? Ecological Monographs. 77-117-145.
- Condon, L. P., P. J. Weisberg and J. C. Chambers. 2011. Abiotic and biotic influences on *Bromus tectorum* invasion and *Artemisia tridentata* recovery after fire. International Journal of Wildland Fire Science. *in press*.
- D'Antonio, C. M., J. C. Chambers, R. Loh and J.T. Tunison. 2009. Applying ecological concepts to the management of widespread grass invasions. Pages 123-149. In: R. L. Inderjit, editor. Ecological Invasions and Restoration. Springer, Netherlands.
- Blank, R. S., J. C. Chambers, B. A. Roundy, S. E. Meyer, and A. Whittaker. 2007. Nutrient availability in rangeland soils: influence of prescribed burning, herbaceous vegetation removal, over-seeding with Bromus tectorum, season, and elevation. Rangeland Ecology and Management 60:644-655.
- Rau, B. M., R. R. Blank, J. C. Chambers, and D. W. Johnson. 2007. Prescribed fire in a Great Basin sagebrush ecosystem: dynamics of soil extractable nitrogen and phosphorus. Journal of Aridland Environments. 71:362-375.
- Wisdom, M. J. and J. C. Chambers. 2009. Concepts for ecologically-based management of Great Basin shrublands. Restoration Ecology. 17:740-749.